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On local analysis of instability by magnetic buoyancy 

By M. P. GIBBONS? 
Department of Mechanical Engineering, The City University, London, U.K. 

(Received 4 March 1981 and in revised form 17  August 1981) 

Moffatt’s (1978) model for instability, by magnetic buoyancy, of a rotating layer of 
compressible fluid is extended to demonstrate that local stability analysis, theoretically 
valid for only a shallow layer, can still be useful for predicting instability when the 
layer is deep. 

1. Introduction 
Certain stability problems in magnetohydrodynamics (see Acheson 1978 and 

references therein) reduce to finding the complex eigenvalues C of the differential 
equation 

subject to the boundary conditions 

Here A is a parameter, and X has been made dimensionless with respect to a scale 
height. 

The complexity of the coefficients q precludes a general analytic solution of (l.l), 
but in the limit h -+ 00 the solution can be deduced (Nayfeh 1973) from the WKBJ 
approximation : 

where a,  6 are complex constants, and 

f (Z1) = f ( X z )  = 0. (1.2) 

f = q,+@ exp (A id )  + 6 exp ( - hid), (1.3) 

(1.4) e(z) = sz (qo(7))i d7 

(it is sufficient, for the purposes of this paper, to assume that there are no turning 
points). Then (1.2) is satisfied if N is an integer and 

In general, (1.5) is a pair of nonlinear equations for the real and imaginary parts 
of C and must be solved numerically, a process which is scarcely more efficient than 
numerical solution of ( 1 . 1 ) .  When Isz - Z1l 4 1,  (1.5) may be approximated by 

where X c  = $ ( X 1 + X 2 ) ;  the question remains, however, of how well this local analysis 
approximates the eigenvalues of (1 .1)  when I X 2 - X 1 (  - O(1).  We address this matter 
here, by solving (1.1) numerically in a particular case and comparing the true 
eigenvalues (obtained in $4)  with those predicted by local analysis (see $3); 

t Present address : Marlborough College, Wiltshire, SN8 lPA, U.K. 
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attention is confined to a simple model for instability by magnetic buoyancy, which 
is now described. 

2. Mathematical formulation 
Consider, therefore, a layer of isothermal, inviscid, compressible fluid, of density 

po(z), which is a perfect conductor of electricity and rotates with constant angular 
velocity S2 = - Qe,, where Q > 0 and e,, e, and e, are unit vectors in the x-, y- and z- 
directions respectively of a rotating Cartesian frame of reference. The fluid is un- 
bounded in directions x and y but bounded by plane walls a t  z = zl, z2. A magnetic 
field of flux density B, = B(z) e, permeates the fluid, which is therefore in equilibrium 
under gravity g = -g(z) e,, provided 

dp BdB 
u2--O+--+pog = 0. 

dx p dz 
Here p and a are respectively the constant magnetic permeability and isothermal 
sound speed. We can rewrite (2.1) in the form 

where V ( z )  = B(z) [pp0(z)]-4 is the Alfvh  speed; (2.2) determines the stratification 
once the dependence of V on height has been prescribed. We shall assume that z1 and 
z2 are no more than a scale height apart, and take g to be constant. The system we have 
just described is potentially unstable by the mechanism of magnetic buoyancy, as 
described by Moffatt (1978, 8 10.7). 

Perturbations to the equilibrium (2.1) are governed by the linearized forms of the 
momentum equation, of Gauss's law and the continuity equation and of the magnetic 
induction equation. In  nonlinear form these equations are 

(2.3) 

1 

P 
= -a2Vp*+-(VAB*)AB*+p*g, 

- V A (u A B*), 
dP* aB* 
- + + * V . U  = 0, V .B*  = 0, - - 
at at 

where t ,  u = (u, v, w), p* and B* denote time, fluid velocity, fluid density and magnetic 
flux density respectively. We confine attention to the low-frequency perturbations by 
setting d l d t  = 0 in the momentum equation (to filter out inertial and pure Alfvbn 
waves) and a/at = 0 in the continuity equation (to filter out acoustic and magneto- 
acoustic waves). We obtain in this manner the linearized equations 

- b  a = B--BoV.u-wB'e,, au 
at aY 

pov.u+p;w = 0, I 
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to which we seek solutions of the form 
A 

[u, b,p] = 9[ii, b,p^]expi(kx+my-wt). (2.5) 

Here b = (bz ,  bv, b,) and p are the perturbations in magnetic flux and fluid density, 
o = wR + iw, is the (complex) angular frequency, k and m are wavenumbers in the 
directions of and B,, and, throughout the paper, a prime denotes ordinary differen- 
tiation of a function with respect to its argument, in this case z. By eliminating all 
variables in favour of 8 we obtain a second-order ordinary differential equation €or 

(2.6) 
f = B 8 :  f" + [ d A ,  + WA, +A,]  f = 0, 

where A,@) = 4Q2k2/m4V4, (2.7) 

s2 = k2 + m2. (2.10) 

To write (2.6) in the dimensionless form (1 .1)  we set 

(2.11) 

- 
k k - _ _  r = Vg/a2, h = - = -, - c = o/m, 
m m  

and define V 2 (  1 + D  +D)  

B(Z) = (7- 8 - 4 F 2 ) k  

Then 

(2.13) 

(2.14) 

(2.15) 

C - 
(12(2) = -:-E2+#(1-$)+$'.  (2.16) 

V2 

Here, without loss of generality, we have set p(0) = 1.  Thus V, = V(O), and I? is the 
ratio of magnetic to fluid pressure at  z = 0, a free parameter of the system; E is the 
dimensionless complex wave speed along the magnetic field. The system is unstable 
if E has a positive imaginary part. 

It will be of use, before proceeding, to observe that (1.1) and (1.2) clearly imply 

(2.17) 
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3. Local stability analysis 

is provided by ( 1.6). Thus 
When I X 2  - Zll < 1, an approximate dispersion relation for the complex wave speed 

and the right-hand side is evaluated a t  X = 2,. In dimensional form 

From (3.2) we see that w will have a non-zero imaginary part, implying instability, if 

and 1.21 and V2/a2  are sufficiently small. 
The terms in PB’/2a2B do not appear in (the Cartesian limit of) equation (4.1) of 

Acheson & Gibbons (1978), or in equation (3.2) of Acheson (1979) with 7 = 0, because 
it has been assumed in these papers that V 2  < a2 throughout the fluid; these authors 
set N = 1, the most unstable value consistent with the boundary conditions. Moffattt 
(1978) ignored boundary conditions and set N = 0; thus, according to him, the system 
is locally unstable at  X = X o  if 

]El < iv(Xo); (3.3) 

we shall adopt this definition of local stability here as well. Then in the limit h -+ co 
the fluid is unstable if it is locally unstable everywhere (see the appendix). 

When 121-Z21 N @I),  however, the estimate (3.1) of the complex eigenvalue 
5 = C,+iC, varies significantly throughout [X1, 4. Now the limit of (2.17) as h -+ co is 

and if CI .t. 0 then the integrand in (3.4) must change sign. There is therefore at  least 
one location in [Zl, X 2 ]  for which the real part of the eigenvalue is given correctly by 
(3.1); but this location is not necessarily the mid-point, as we shall now demonstrate. 

4. Stability analysis for a deep layer : X 2  - Zl = 1 

For the numerical calculations we chose r = 0.3, Z1 = - 0.5, X 2  = 0.5 and 

j7 = e-%Z. (4.1) 

t Equation (3.2) with N = 0 is structurally similar though not quite identical to the one 
obtained by Moffatt, who bypassed the derivation of (2.6) by taking the limit h + 00 in (2.4). 
In this way the time-dependent term in the second of (2.3) was filtered out by a secondary 
process, through which other terms in the last of (2.4) are ignored as well, and the magneto- 
acoustic speed remains a natural speed in Moffatt’s analysis. The magnetoacoustic speed does 
not feature in our analysis because the time-dependent term in the last of (2.4) is absent. The 
two approaches can be reconciled by replacing c2+ ht by c2 (equivalent to replacing a2 + V 2  by 
a2) in Moffatt’s equation ( l O . i l S ) ,  wliich then rrdricrs to (3 .2)  a h o w  w t l l  N = 0 .  
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- 
2 

- 0.5 
- 0.4 
- 0 .3  
- 0.2 
- 0.1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

v 
1.49 
1.38 
1.27 
1.17 
1.08 
1.00 
0.92 
0.85 
0.79 
0.73 
0.67 

POlPO(0) 
1.30 
1.25 
1.19 
1.13 
1.07 
1 .oo 
0.93 
0.87 
0.80 
0.74 
0.68 

BIB(()) 
1.70 
1.54 
1.39 
1.25 
1.12 
1.00 
0.89 
0.79 
0.71 
0.63 
0.55 

TABLE 1. Variation with height Z of density po  and magnetic field B 

The corresponding equilibrium magnetic field and density are clearly given by 

whereD(6) = 1 +&e-%and lOB = 13HB = 2(13 - 8D) Hp,  and are tabulatedin table 1. 
Note that the density decreases with height less rapidly than the magnetic field, a 
necessary condition for instability according to (3 .2 ) .  

First we solved (1.1) and (1 .2 )  for E = 0.5 and various values of A. A shooting 
method was used: (1 .1)  was rewritten as four first-order equations for the real and 
imaginary parts, and their derivatives, off = fR + i fI; C was guessed; ( 1 . 1 )  was inte- 
grated subject to the initial conditions 

using Merson’s method and the NAG (Numerical Algorithms Group) routine D02ABF; 
then C was guessed again until it converged to the value for which f ( Z z )  = 0. (The 
resulting pair of nonlinear equations for C R , E I  was solved by a modified Newton- 
Raphson method, using NAG routine E04FDF.) We set PI = 0 (ensuring that the 
eigenfunction is real if the eigenvalue is) and PR > 0 (it is determined ultimately by 
normalization). 

In every case we found that the iterative scheme converged to a complex eigenvalue 
if its real part was well guessed and its imaginary part overestimated; otherwise it 
converged to a real eigenvalue. The reason for this is best appreciated by considering 
the surface 2 = If(x2)l  as a function of F ,  and CI; the eigenvalues are the points 
(CR, 2,) where 2 dips to a local minimum of zero. Each such point is located in a valley 
whose axis is F ,  = constant (this explains why C$ must be well guessed) and, along 
the axis, the valley floor rises at  first from EI  = 0, dips to the minimum and then rises 
indefinitely (this explains why CI must be overestimated). Thus it is more appropriate 
to use N = 0 in (3 .1 )  than N = 1 .  The picture is symmetric about CI = 0 since the 
complex eigenvalues occur in conjugate pairs. 
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- 
2 

- 0.5 
- 0.4 
- 0.3 
- 0.2 
-0.1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

G,(q = ma&) 
0.75 + 0.5% 
0.68 + 0*48i 
0.60 + 0-40i 
0.54 -+- 0.33i 
0.47 f 0.27i 
0.42 + 0.22i 
0.36+ 0.18i 
0.32 + 0.15i 
0.28 + 0.12i 
0.24+0*10i 
0.21 + 0.08i 

h = 10 

0.71 
0.71 
0.51 
0.51 

0.43 f 0.14i 
0.43 + 0.14i 
0.43 + 0.14i 

0.51 
0.51 
0.17 
0.17 

h = 16 

0.73 
0.61 
0.61 

0.53 + 0.23i 
0.46 
0.46 

0.34 + 0.09d 
0.34 + 0.09i 
0.34 + 0.09i 

0.20 
0.20 

h = 25 

0.66 
0.58 

0.60+ 0.30i 
0.49 

0.46 + 0.16i 
0.30 + 0.03i 
0.34 + 0.0% 
0.34 + 0.0% 
0.30 + 0.03i 
0.30 + 0.03i 
0.30+ 0.03; 

TABLE 2. Eigenvalues to which the iterative scheme converges when the local frequencies 
I&,(%) = EEL@) in the second column are used as starting points and % = 0.5; GL(Z) is inde- 
pendent of h since N = 0 in (3.1). Here, as throughout the paper, all figures have been obtained 
to much greater accuracy but rounded for ease of presentation. 

For each value of h we repeated the calculation of the eigenvalue Ts = %ic for eleven 
different initial guesses, namely the local eigenvalues 6&,(Z) = %iCL(Z), where CL(Z) is 
given by (3.1), and Z = Xl+0.1J(X2-Zl), J = 0,1, ..., 10. The results for h = 10, 16 
and 25 are shown in table 2. Note how the iterative scheme converges to a complex 
eigenvalue when the frequency is well-guessed. The calculations were also performed 
for stronger field gradients than that of (4.1); the same eleven initial guesses were not 
sufficient to locate the complex eigenvalues, because isL@) varied too rapidly (and 
intermediate locations had to be used), Thus the steeper the field gradient the more 
accurately isR must be guessed. 

Note also, from table 2, that the value of X for which GL(X) selects the eigenvalue 
with maximum growth rate migrates towards the lower boundary Z1 = -0.5 as 
h -+ 00. For h = 16,25 it is X = - 0.2, - 0.3 and only for h 5 10 is it the mid-point 
X = 0. Since is, must be well-guessed, and i&(Z) increases if 2 decreases, this simply 
means that the frequency corresponding to maximum growth rate increases with A ;  
but the reason for this, in turn, can be appreciated upon inspection of figure 1. Here 
the eigenfunction f corresponding to maximum growth rate is plotted for h = 10,25. 
It is clear that the peak which gives the maximum contribution to If12 is migrating 
towards X1 = - 0.5 as h -+ m and oscillations increase; on the other hand, it can easily 
be shown that F(X), defined by (2.14), decreases monotonically with Z for fields of the 
form (4.1). Thus CR - p(X) can (and must) vanish only once, changing sign from nega- 
tive to positive; and this point must migrate towards Z1 as h increases to balance out 
the positive and negative contributions to the integral (3.4). 

By fixing h and plotting growth rate 5, versus wavenumber %i we obtained the 
critical wavenumber, %,(A), which is the maximum for instability; figure 2 is typical. 
Then by varying h we obtained %, as a function of L. The results are presented in 
figure 3, where the region above the solid curve corresponds to instability; no complex 
eigenvalues were found €or h < 4.7. 

The vertical broken lines are given by i% = 0.61,0-72, the minimum and maximum 
values of w(5) in [ - 0-5,0*5]. To the left of m = 0.61, the system is locally unstable 
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-0.5 0 0.5 

- 
Z 

FIGURE 1. Eigenfunctions f (2)  for h = 10, W = 0.43+0.141 (broken curve) and h = 25, 
0 = 0.6+0.3i  (solid curve). In  each case fR(Z) has the more prominent peak while fr(E) has 
zero gradient at 2 = -0.5. 

FIGURE 2. Growth rate GI as a function of 5% Here A = 10, there are two branches and 
EiC = 0.62. The number of branches and maximum growth rate increase with A ;  an absolute 
maximum cannot be calculated because dissipative processes have been ignored. 

everywhere according to (3.3); to the right of ?% = 0.72 it is locally stable everywhere. 
Thus there is a region, shaded in the diagram, for which the fluid is unstable even though 
it is locally stable in part of the interval [ - 0.5,0.5]. 

Finally, the sloping broken line is the ray h = z/?% = 9-5. Thus, for h > 9.5, the 
fluid is unstable if it is locally unstable everywhere. For A --f cx), the same result is 
proved analytically in the appendix. 
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FIGURE 3. Stability diagram in the (E, z)-plane. The picture is symmetric about E = 0 (since 
complex eigenvalnes occur in conjugate pairs) and about k = 0 (since the sign of k does not 
matter anyway). For a description see the last two paragraphs of $4 .  

5. Conclusions 
The stability has been considered of a deep,? rotating layer of inviscid, isothermal, 

compressible fluid which is permeated by a non-uniform horizontal magnetic field. 
This layer (described in 3 2) is unstable (see 5 4) to perturbations whose wavelength 
2nlm along the field is sufficiently long compared with the normal wavelength 2n/k, 
when the magnetic field strength falls off with height more rapidly than the fluid den- 
sity. In this respect the stability of the fluid is predicted adequately by the local 
(shallow-layer) analysis of Moffatt (1978, 5 10.7) and Acheson & Gibbons (1978). 

When the frequencies and growth rates of the unstable modes for a deep layer are 
sought, however, the local stability analysis must be applied with caution. The local 
dispersion relation (1.6) should be evaluated at  a point x,, which is not necessarily the 
mid-point but migrates towards the lower boundary (i.e. towards regions of higher 
local Alfv6n speed V ( z ) )  as k/m increases towards infinity; xo is also the point around 
which the amplitude of the eigenfunction is concentrated. Provided these details are 
observed, the local eigenvalues wL provide good initial guesses for a numerical scheme 
to determine the complex eigenvalues of (1.1) and (1.2); the scheme requires that the 
real part of the initial guess wL match the true frequency wR rather well and that the 
imaginary part of the initial guess be an overestimate of the true growth rate w I .  

The author is grateful to several referees of previous versions of this paper for their 
comments and to the Deutscher Akademischer Austauschdienst for financial support. 

t The results would not be altered qualitatively if the layer were deeper than one iwthermal 
scale height, but tlic assumption of constant grctvrly uoiild be called into question. 
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Appendix. Local instability everywhere implies instability 
We show that the system described in $2 and governed by (1.1)-(1.2) is unstable 

as h -+ 00 if it is localIy unstable everywhere, and p ,  defined in (2.14), is a monotonically 
decreasing function of X. The latter condition was sufficiently general to cover all 
fields considered in the numerical work. 

Assume CI $. 0 and resolve (2.15) into its real and imaginary parts: 

The condition on 
from negative to positive. Let 6 be this point, and consider the function 

ensures that (see (3.4)) there is a point a t  which qoI changes sign 

where I ( z ? i J  (-QOR+I&+QZII')' (A 3) 

is a function of 5 as well as of X, since CR = p(E) in (A 1). Since F(2,) = -P(z,), Rolle's 
theorem ensures that the imaginary part of (1.5) is satisfied provided that F is con- 
tinuous; the real part of (1.5) can always be satisfied for any CI > 0 since N / A  is 
arbitrary. But F is differentiable, and therefore continuous, as long as qoR > 0 for all 
X1 < X 6 Z z ;  and this will be true for some cI > 0,  however small, if (3.3) is satisfied 
everywhere. 
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